Many new Transformer architecture improvements have been proposed since my last post on “The Transformer Family” about three years ago. Here I did a big refactoring and enrichment of that 2020 post — restructure the hierarchy of sections and improve many sections with more recent papers. Version 2.0 is a superset of the old version, about twice the length.
Notations Symbol Meaning $d$ The model size / hidden state dimension / positional encoding size....
[Updated on 2023-01-24: add a small section on Distillation.]
Large transformer models are mainstream nowadays, creating SoTA results for a variety of tasks. They are powerful but very expensive to train and use. The extremely high inference cost, in both time and memory, is a big bottleneck for adopting a powerful transformer for solving real-world tasks at scale.
Why is it hard to run inference for large transformer models? Besides the increasing size of SoTA models, there are two main factors contributing to the inference challenge (Pope et al....
[Updated on 2020-11-12: add an example on closed-book factual QA using OpenAI API (beta).
A model that can answer any question with regard to factual knowledge can lead to many useful and practical applications, such as working as a chatbot or an AI assistant🤖. In this post, we will review several common approaches for building such an open-domain question answering system.
Disclaimers given so many papers in the wild:
Assume we have access to a powerful pretrained language model....
[Updated on 2023-01-27: After almost three years, I did a big refactoring update of this post to incorporate a bunch of new Transformer models since 2020. The enhanced version of this post is here: The Transformer Family Version 2.0. Please refer to that post on this topic.]
It has been almost two years since my last post on attention. Recent progress on new and enhanced versions of Transformer motivates me to write another post on this specific topic, focusing on how the vanilla Transformer can be improved for longer-term attention span, less memory and computation consumption, RL task solving and more....
[Updated on 2019-02-14: add ULMFiT and GPT-2.] [Updated on 2020-02-29: add ALBERT.] [Updated on 2020-10-25: add RoBERTa.] [Updated on 2020-12-13: add T5.] [Updated on 2020-12-30: add GPT-3.] [Updated on 2021-11-13: add XLNet, BART and ELECTRA; Also updated the Summary section.]
Fig. 0. I guess they are Elmo & Bert? (Image source: here) We have seen amazing progress in NLP in 2018. Large-scale pre-trained language modes like OpenAI GPT and BERT have achieved great performance on a variety of language tasks using generic model architectures....
[Updated on 2018-10-28: Add Pointer Network and the link to my implementation of Transformer.] [Updated on 2018-11-06: Add a link to the implementation of Transformer model.] [Updated on 2018-11-18: Add Neural Turing Machines.] [Updated on 2019-07-18: Correct the mistake on using the term “self-attention” when introducing the show-attention-tell paper; moved it to Self-Attention section.] [Updated on 2020-04-07: A follow-up post on improved Transformer models is here.]
Attention is, to some extent, motivated by how we pay visual attention to different regions of an image or correlate words in one sentence....