Meta Reinforcement Learning

In my earlier post on meta-learning, the problem is mainly defined in the context of few-shot classification. Here I would like to explore more into cases when we try to “meta-learn” Reinforcement Learning (RL) tasks by developing an agent that can solve unseen tasks fast and efficiently. To recap, a good meta-learning model is expected to generalize to new tasks or new environments that have never been encountered during training. The adaptation process, essentially a mini learning session, happens at test with limited exposure to the new configurations....

June 23, 2019 · 22 min · Lilian Weng

Domain Randomization for Sim2Real Transfer

In Robotics, one of the hardest problems is how to make your model transfer to the real world. Due to the sample inefficiency of deep RL algorithms and the cost of data collection on real robots, we often need to train models in a simulator which theoretically provides an infinite amount of data. However, the reality gap between the simulator and the physical world often leads to failure when working with physical robots....

May 5, 2019 · 15 min · Lilian Weng

Are Deep Neural Networks Dramatically Overfitted?

[Updated on 2019-05-27: add the section on Lottery Ticket Hypothesis.] If you are like me, entering into the field of deep learning with experience in traditional machine learning, you may often ponder over this question: Since a typical deep neural network has so many parameters and training error can easily be perfect, it should surely suffer from substantial overfitting. How could it be ever generalized to out-of-sample data points? The effort in understanding why deep neural networks can generalize somehow reminds me of this interesting paper on System Biology — “Can a biologist fix a radio?...

March 14, 2019 · 22 min · Lilian Weng

Generalized Language Models

[Updated on 2019-02-14: add ULMFiT and GPT-2.] [Updated on 2020-02-29: add ALBERT.] [Updated on 2020-10-25: add RoBERTa.] [Updated on 2020-12-13: add T5.] [Updated on 2020-12-30: add GPT-3.] [Updated on 2021-11-13: add XLNet, BART and ELECTRA; Also updated the Summary section.] Fig. 0. I guess they are Elmo & Bert? (Image source: here) We have seen amazing progress in NLP in 2018. Large-scale pre-trained language modes like OpenAI GPT and BERT have achieved great performance on a variety of language tasks using generic model architectures....

January 31, 2019 · 36 min · Lilian Weng

Object Detection Part 4: Fast Detection Models

In Part 3, we have reviewed models in the R-CNN family. All of them are region-based object detection algorithms. They can achieve high accuracy but could be too slow for certain applications such as autonomous driving. In Part 4, we only focus on fast object detection models, including SSD, RetinaNet, and models in the YOLO family. Links to all the posts in the series: [Part 1] [Part 2] [Part 3] [Part 4]....

December 27, 2018 · 19 min · Lilian Weng

Meta-Learning: Learning to Learn Fast

[Updated on 2019-10-01: thanks to Tianhao, we have this post translated in Chinese!] A good machine learning model often requires training with a large number of samples. Humans, in contrast, learn new concepts and skills much faster and more efficiently. Kids who have seen cats and birds only a few times can quickly tell them apart. People who know how to ride a bike are likely to discover the way to ride a motorcycle fast with little or even no demonstration....

November 30, 2018 · 30 min · Lilian Weng

Flow-based Deep Generative Models

So far, I’ve written about two types of generative models, GAN and VAE. Neither of them explicitly learns the probability density function of real data, $p(\mathbf{x})$ (where $\mathbf{x} \in \mathcal{D}$) — because it is really hard! Taking the generative model with latent variables as an example, $p(\mathbf{x}) = \int p(\mathbf{x}\vert\mathbf{z})p(\mathbf{z})d\mathbf{z}$ can hardly be calculated as it is intractable to go through all possible values of the latent code $\mathbf{z}$. Flow-based deep generative models conquer this hard problem with the help of normalizing flows, a powerful statistics tool for density estimation....

October 13, 2018 · 21 min · Lilian Weng

From Autoencoder to Beta-VAE

[Updated on 2019-07-18: add a section on VQ-VAE & VQ-VAE-2.] [Updated on 2019-07-26: add a section on TD-VAE.] Autocoder is invented to reconstruct high-dimensional data using a neural network model with a narrow bottleneck layer in the middle (oops, this is probably not true for Variational Autoencoder, and we will investigate it in details in later sections). A nice byproduct is dimension reduction: the bottleneck layer captures a compressed latent encoding....

August 12, 2018 · 21 min · Lilian Weng

Attention? Attention!

[Updated on 2018-10-28: Add Pointer Network and the link to my implementation of Transformer.] [Updated on 2018-11-06: Add a link to the implementation of Transformer model.] [Updated on 2018-11-18: Add Neural Turing Machines.] [Updated on 2019-07-18: Correct the mistake on using the term “self-attention” when introducing the show-attention-tell paper; moved it to Self-Attention section.] [Updated on 2020-04-07: A follow-up post on improved Transformer models is here.] Attention is, to some extent, motivated by how we pay visual attention to different regions of an image or correlate words in one sentence....

June 24, 2018 · 21 min · Lilian Weng

Implementing Deep Reinforcement Learning Models with Tensorflow + OpenAI Gym

The full implementation is available in aptsunny/deep-reinforcement-learning-gym In the previous two posts, I have introduced the algorithms of many deep reinforcement learning models. Now it is the time to get our hands dirty and practice how to implement the models in the wild. The implementation is gonna be built in Tensorflow and OpenAI gym environment. The full version of the code in this tutorial is available in [lilian/deep-reinforcement-learning-gym]. Environment Setup Make sure you have Homebrew installed: /usr/bin/ruby -e "$(curl -fsSL https://raw....

May 5, 2018 · 13 min · Lilian Weng

Policy Gradient Algorithms

[Updated on 2018-06-30: add two new policy gradient methods, SAC and D4PG.] [Updated on 2018-09-30: add a new policy gradient method, TD3.] [Updated on 2019-02-09: add SAC with automatically adjusted temperature]. [Updated on 2019-06-26: Thanks to Chanseok, we have a version of this post in Korean]. [Updated on 2019-09-12: add a new policy gradient method SVPG.] [Updated on 2019-12-22: add a new policy gradient method IMPALA....

April 8, 2018 · 52 min · Lilian Weng

A (Long) Peek into Reinforcement Learning

[Updated on 2020-09-03: Updated the algorithm of SARSA and Q-learning so that the difference is more pronounced. [Updated on 2021-09-19: Thanks to 爱吃猫的鱼, we have this post in Chinese]. A couple of exciting news in Artificial Intelligence (AI) has just happened in recent years. AlphaGo defeated the best professional human player in the game of Go. Very soon the extended algorithm AlphaGo Zero beat AlphaGo by 100-0 without supervised learning on human knowledge....

February 19, 2018 · 31 min · Lilian Weng

The Multi-Armed Bandit Problem and Its Solutions

The algorithms are implemented for Bernoulli bandit in aptsunny/multi-armed-bandit. Exploitation vs Exploration The exploration vs exploitation dilemma exists in many aspects of our life. Say, your favorite restaurant is right around the corner. If you go there every day, you would be confident of what you will get, but miss the chances of discovering an even better option. If you try new places all the time, very likely you are gonna have to eat unpleasant food from time to time....

January 23, 2018 · 10 min · Lilian Weng

Object Detection for Dummies Part 3: R-CNN Family

[Updated on 2018-12-20: Remove YOLO here. Part 4 will cover multiple fast object detection algorithms, including YOLO.] [Updated on 2018-12-27: Add bbox regression and tricks sections for R-CNN.] In the series of “Object Detection for Dummies”, we started with basic concepts in image processing, such as gradient vectors and HOG, in Part 1. Then we introduced classic convolutional neural network architecture designs for classification and pioneer models for object recognition, Overfeat and DPM, in Part 2....

December 31, 2017 · 13 min · Lilian Weng

Object Detection for Dummies Part 2: CNN, DPM and Overfeat

Part 1 of the “Object Detection for Dummies” series introduced: (1) the concept of image gradient vector and how HOG algorithm summarizes the information across all the gradient vectors in one image; (2) how the image segmentation algorithm works to detect regions that potentially contain objects; (3) how the Selective Search algorithm refines the outcomes of image segmentation for better region proposal. In Part 2, we are about to find out more on the classic convolution neural network architectures for image classification....

December 15, 2017 · 7 min · Lilian Weng

Object Detection for Dummies Part 1: Gradient Vector, HOG, and SS

I’ve never worked in the field of computer vision and has no idea how the magic could work when an autonomous car is configured to tell apart a stop sign from a pedestrian in a red hat. To motivate myself to look into the maths behind object recognition and detection algorithms, I’m writing a few posts on this topic “Object Detection for Dummies”. This post, part 1, starts with super rudimentary concepts in image processing and a few methods for image segmentation....

October 29, 2017 · 15 min · Lilian Weng

Learning Word Embedding

Human vocabulary comes in free text. In order to make a machine learning model understand and process the natural language, we need to transform the free-text words into numeric values. One of the simplest transformation approaches is to do a one-hot encoding in which each distinct word stands for one dimension of the resulting vector and a binary value indicates whether the word presents (1) or not (0). However, one-hot encoding is impractical computationally when dealing with the entire vocabulary, as the representation demands hundreds of thousands of dimensions....

October 15, 2017 · 18 min · Lilian Weng

Anatomize Deep Learning with Information Theory

Professor Naftali Tishby passed away in 2021. Hope the post can introduce his cool idea of information bottleneck to more people. Recently I watched the talk “Information Theory in Deep Learning” by Prof Naftali Tishby and found it very interesting. He presented how to apply the information theory to study the growth and transformation of deep neural networks during training. Using the Information Bottleneck (IB) method, he proposed a new learning bound for deep neural networks (DNN), as the traditional learning theory fails due to the exponentially large number of parameters....

September 28, 2017 · 9 min · Lilian Weng

From GAN to WGAN

[Updated on 2018-09-30: thanks to Yoonju, we have this post translated in Korean!] [Updated on 2019-04-18: this post is also available on arXiv.] Generative adversarial network (GAN) has shown great results in many generative tasks to replicate the real-world rich content such as images, human language, and music. It is inspired by game theory: two models, a generator and a critic, are competing with each other while making each other stronger at the same time....

August 20, 2017 · 21 min · Lilian Weng

How to Explain the Prediction of a Machine Learning Model?

The machine learning models have started penetrating into critical areas like health care, justice systems, and financial industry. Thus to figure out how the models make the decisions and make sure the decisioning process is aligned with the ethnic requirements or legal regulations becomes a necessity. Meanwhile, the rapid growth of deep learning models pushes the requirement of interpreting complicated models further. People are eager to apply the power of AI fully on key aspects of everyday life....

August 1, 2017 · 18 min · Lilian Weng