Meta Reinforcement Learning
In my earlier post on meta-learning, the problem is mainly defined in the context of few-shot classification. Here I would like to explore more into cases when we try to “meta-learn” Reinforcement Learning (RL) tasks by developing an agent that can solve unseen tasks fast and efficiently. To recap, a good meta-learning model is expected to generalize to new tasks or new environments that have never been encountered during training. The adaptation process, essentially a mini learning session, happens at test with limited exposure to the new configurations....